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1. Introduction 
 
Despite the extensive use of motion capture systems, direct use of the data they produce is often 
prevented by a number of problems. First of all, due to hardware properties of the sensors used for 
motion capture, the signals that are measured will often be noisy. Noise may also be caused by the 
shifting of markers used for motion capture. Markers may shift with respect to clothing, which may 
shift with respect to the skin, which in turn may shift with respect to the underlying skeleton, to 
which recorded data is usually mapped. 
Furthermore, in optical motion capture systems, where body movement is recorded by determining 
the 3D position of reflective markers with multiple cameras, a series of other problems may occur. 
Markers may be occluded for a period of time, by other markers, body parts, or objects, leading to 
gaps in the data. Also, if passive markers are used (markers that are not uniquely distinguishable), it 
may be unclear that when a marker reappears, this is actually the same marker that had disappeared 
before. Determining marker identities may also pose a problem as markers come too close, in which 
case their identities may be mixed up by the system. A final problem is the appearance of ghost 
markers, recording of reflections in the environment that do not belong to any of the markers. 
Various methods have been developed to deal with one or some of these problems in an automated 
fashion, reducing the need for manual processing. Some of these methods can operate in real-time, 
while others are a means of post-processing. They also differ with respect to the use of an underlying 
skeleton to determine motion constraints, which may be non-existent, predefined, or estimated as 
part of the method. 
In this report, the advantages and disadvantages of various methods will be discussed and an effort 
shall be made to combine a number of methods into a pipeline that is able to deal with most of the 
problems mentioned above, allowing it to process raw motion capture data. 

2. Related work 
 
There is a variety of research on automated processing of motion capture data, focused on a 
different subset of the problems discussed earlier. 
Aristidou et al. [2] present a method for dealing with marker occlusion in real-time. It combines the 
use of the Kalman filter with inferred information from neighboring markers. No knowledge of a 
predefined skeleton is used, although the method requires three markers to be placed on each rigid 
bodypart, opposed to the other methods discussed next and the methods presented in this report. 
Van Rhijn et al. [3] discuss a method that does not put such constraints on the amount of markers 
per body part. Skeletal constraints are determined in a so-called “model estimation phase”, a pre-
processing step in which a set of body parts is put through all possible motions to determine the 
movement constraints imposed by the joints. 
Sul et al. [4] present a method serving three purposes: (i) smoothing the jerky motion due to the 
sensor noise, (ii) satisfying the kinematic constraints of the human body, and (iii) generating a 
seamless motion transition between motion segments. This last part suggests it may also be useful as 
a post processing method for gap filling. They developed a method based on the Kalman filter 
approach that handles these problems in a single, unified framework. 



Piazza et al. [5] have developed a real-time extrapolation algorithm that deals with missing markers 
and does not require any statistical data (in contrast to methods using the Kalman filter). It predicts 
the marker position based on previous position and velocity, using the assumption that movement 
consists of linear and circular movement.  This prediction is corrected using a constraint matrix, 
storing rigid marker distance relations. 
One of the issues that remains unaddressed in these papers is the problem of marker identification, 
either due to the assumption markers are uniquely identifiable or due to the restricted scope of the 
research. 

3. Pipelines & report overview 
 
In this report, the essential steps of both real-time and post-processing pipelines for automatic 
processing of motion capture data are discussed. Based on the problems discussed in Section 1, the 
following processes, that may serve as pipeline components, can be identified: 
 

- Smoothing: noise can be removed from available data segments using smoothing methods. 
This can be done to improve quality of playback at a later stage, or to obtain a more accurate 
estimation of position and velocity of a marker, which may allow for more accurate 
estimation of its position during periods of marker occlusion. 

- Gap filling: as markers go missing, data gaps can be filled using extrapolation methods, 
predicting their positions based on previous data. In real-time applications, extrapolation 
should be used for all missing markers, in order to be able to display an estimate of their 
position during the current frame. During post-processing, gap filling may also be done using 
interpolation methods, allowing for the use of data both before and after the gap. 

- Marker identification: marker identification is an issue for systems using passive markers. If a 
new data segment appears, checks should be made to see if it might belong to a marker that 
has disappeared at an earlier stage. Also, problems such as marker switches and the 
appearance of ghost markers might be resolved here, but these issues will remain largely 
unaddressed during this research. 

- Interpolation: once a marker reappears, its predicted (extrapolated) value may differ from 
the actual data. In real-time processing, interpolation may be applied to create a smooth 
transition between predicted and actual position over the next couple of frames, reducing 
any visual distortions as the marker is displayed. 

 
Figure 1 provides a decision chart illustrating how these processes may be combined into a pipeline. 
Both in real-time processing and post-processing, a frame by frame processing method may be 
followed. 
The first step consists of obtaining the data that is available for the current frame. If data is available 
for a certain marker, and was available in the previous frame, the data for the current frame can be 
stored as it is. If no data was available in the previous frame, the identity of the marker to which the 
new data belongs is unknown, which means marker identification should take place. Based on the 
result of marker identification, the data can either be labeled as the reappearance of a missing 
marker, or as a new marker that has appeared for the first time during this frame. 
If reappearance did occur, predicted position in the previous frame is likely to differ from the new 
positional data in the current frame, due to prediction inaccuracy. In a real-time pipeline, 
interpolation may be started for the next couple of frames, smoothing out the transition over a 
number of frames. In a post-processing pipeline, there is no need for this kind of interpolation, since 
data doesn’t have to be displayed for the current frame. Instead, the interpolation step may be used 
to fill the gap in the previous frames, now that the position of reappearance is known. After any 
possible interpolation, the data for the current frame can be stored. 



Now, to be able to perform marker identification,  a predicted position should be maintained and 
updated for each marker that goes missing. This process is depicted on the right side of Figure 1. If no 
data is available for a marker in the current frame, a check should be made to see if this is the first 
frame for which data is missing. If so, data in previous frames may be smoothed in order to obtain a 
more accurate estimation of the last known position and velocity of the marker, which could improve 
prediction results. As long as a marker remains missing, the “gap” in the data should be filled using 
extrapolation. The extrapolated position of a missing marker can now be stored for the current 
frame. 
 

 
 
The remainder of this report is divided as follows: In Section 4, smoothing methods are discussed, 
followed by various methods that can be used for gap filling in Section 5. In section 6, the problem of 
marker identification is addressed and in section 7, results of adding neighboring marker constraint 
to gap filling methods and marker identification methods will be presented. Suitability the methods 
presented in each section as part of a real-time or post-processing pipeline will also be discussed. 

4. Smoothing 
 
Motion capture data is noisy for various reasons: the signals of the measurement equipment may be 
subject to noise, the clothing to which markers are attached may shift on the skin and the skin may 
shift with respect to the underlying skeleton. 
There are various methods for filtering data in order to reduce such noise. This discussion will focus 
on Butterworth filters and the Kalman smoother filter. 
 



4.1 Butterworth lowpass 
 
The Butterworth lowpass filter [1] is used to remove high frequency behavior from a data signal. This 
can be useful for processing motion capture data, since signal fluctuations with very high frequencies 
are unlikely to correspond to natural human motion. (A fluctuation occurring over 4 frames in a 
signal captured at 200 frames/second would have to correspond to a movement taking no more than 
0.02 seconds.) For this reason, it is safe to assume such signal changes are noise and may be 
removed. 
Figure 1 illustrates the effect of the lowpass filter for various cutoff frequencies. Behavior with higher 
frequencies will be removed, while behavior with a lower frequency will be maintained. Based on 
experimentation, a cutoff frequency of 4 or 5 is recommended for this particular motion capture 
system, which captures data at 200 frames per second. 

 
Figure 1. Butterworth filtering using various cutoff frequencies. 

 
Figure 2 illustrates the differences of lowpass filters of various orders. These seem to be minimal, but 
for the second order filter, a deviation can be observed at some of the local maxima and minima. For 
this reason, the use of a third or fourth order filter is recommended. 
 



 
Figure 2. Butterworth lowpass filtering using second, third and fourth order filters. 

By examining Figure 1 more closely, a drawback of the lowpass filter became evident. As the data set 
comes to an end, the smoothed data seemed to deviate from the real data. Further examination of 
this phenomena confirmed that this was indeed the case, demonstrating an increased inaccuracy for 
lower cutoff frequencies. Figures 3 and 4 illustrate this by showing the result of smoothing a subset 
of the dataset presented in Figure 1, showing deviations at the end of the subsets that do not appear 
in Figure 1. 
Although this may not pose a problem to post-processing methods of data sets with a number of 
redundant frames at the end, it does pose a problem to real-time processing of a signal, where 
smoothing actually has to be done for these last couple of frames (and the last frame in particular, 
which needs to be displayed at that point in time). It also poses a problem to data sets which contain 
gaps, unless gap filling can be done before smoothing. However, in order to apply gap filling, 
smoothing may be a useful preprocessing step, providing a more accurate starting point and 
direction for extrapolation or interpolation. 



 
Figure 3. Smoothing the first 200 frames of the dataset presented in Figure 1, showing deviations at the end of the subset 
that do not appear in Figure 1. 

 

 
Figure 4. Smoothing the first 400 frames of the dataset presented in Figure 1, showing deviations at the end of the subset 
that do not appear in Figure 1. 



4.2 Butterworth highpass 
 
The Butterworth highpass filter is the opposite of the lowpass filter. It preserves behavior with 
frequencies above the cutoff frequency, while it removes low frequency behavior. It may be used to 
examine the noise in a signal more closely. Figure 5 gives an example of the application of a highpass 
filter. 

 
Figure 5. Butterworth highpass filtering, useful for gaining insight in the amount of noise in the data. 

 

4.3 Kalman filter 
 
The Kalman filter is a filter that is mentioned often in relation to processing motion capture data 
[1,3]. There exist a number of variations on the Kalman filter, such as the extended Kalman filter and 
the Kalman smoother filter. During this research, an implementation of the smoother Kalman filter 
by Murphy [6] was used. 
Figure 6 and 7 illustrate the application of the smoother Kalman filter on a set of motion capture 
data. Figure 6 shows the result of smoothing using Kalman smoother filters of second, third and forth 
order. It illustrates lower orders have a stronger smoothing effect, filtering out more of the high 
frequency behavior. It also shows some inaccuracies of the second order filter at the local maxima 
and minima in the plot. Based on these observations, third order filtering is recommended for the 
use of this particular implementation of the filter on data from this particular motion capture system. 
Figure 5 illustrates the differences between different values of experimental noise in the filtering, a 
value of 10e7 is recommended, which seems to generate an appropriate level of smoothness. 
 



 
Figure 6. Kalman smoothing using second, third and fourth order filters. 

 
Figure 7. Kalman smoothing using different amounts of experimental noise. 



 
Unlike the lowpass filter, the Kalman filter does not cause inaccuracies at the end of a data set. This 
makes it more suitable for application in real-time processing and gap filling methods. 

4.3.1 Minimal amount of frames 

It is also useful to determine the minimal amount of data frames for which smoothing becomes 
useful for prediction, since some markers may disappear and reappear frequently, leading to small 
fragments of data. In order to be able to apply a Kalman smoother filter at all, the amount of 
available data frames should at least be larger than the order of the filter. This means at least four 
data frames are needed to apply the recommended third order Kalman filter. However, in this case, 
the smoothed data is still identical to the original data, increasing the minimum amount of frames to 
five. Whether this is a useful minimum is discussed next. 
Smoothing data can be used to remove noise in the data before a gap, allowing for more accurate 
estimations of position and velocity. Figure 8 shows the effect of applying a Kalman smoother filter 
over a very small number of frames. As the figure illustrates, smoothing over five data frames fails to 
establish any useful noise reduction and results in an inaccurate ending velocity. Smoothing over 
seven or nine frames seems to result in a more significant amount of noise reduction, but still fails 
when it comes to ending velocity. It should also be noted that nine subsequent frames may well be 
part of the same noise peak, as can be seen by looking back at Figure 6 or 7. For these reasons, a 
larger amount of frames seems desirable. 
 

 
Figure 8. Kalman smoothing over a limited amount of frames. 

 
Figure 9 shows the effects of smoothing segments of 30, 40 and 50 frames with respect to smoothing 
the entire data set (consisting of 100 frames). The figure shows the ending velocity after smoothing 
over 50 previous frames is close to that of smoothing over the entire dataset. Table 1 shows the 
mean differences between ending velocities after smoothing over the entire set of previous data 



points and over various limited amounts of previous data points. (The data that was used to generate 
these results consisted of six different datasets, corresponding to the x, y and z coordinates of two 
different markers. This data will also be used for experiments in other sections of this report. 
Differences between ending velocities were calculated for each frame of each dataset, starting at 
frame 101, since a number of previous frames were needed.) 
 Although Table 1 illustrates that the differences keep decreasing as the segment size increases, 
these improvements seem to become less substantial after increases above 50 frames. For this 
reason, 50 previous frames seems to be a useful minimum for smoothing intended to improve 
prediction accuracy. 

 
Figure 9. Kalman filter smoothing over a limited amount of previous frames, compared to smoothing over all previous 
frames. 

 

#previous frames 20 30 40 50 60 70 80 90 100 

mean difference 0.3784 0.3227 0.2751 0.2424 0.2318 0.2237 0.2149 0.2106 0.2094 

standard deviation 0.7490 0.5699 0.4544 0.3911 0.3832 0.3805 0.3777 0.3793 0.3784 

maximum difference 6.5003 4.9709 3.7740 3.2628 3.1662 3.1397 3.1326 3.1347 3.1285 
Table 1. Differences between ending velocities after smoothing over various amounts of previous frames (mm/s). 

 
If a segment of data does not contain at least this amount of frames because two gaps in the data 
follow each other in quick succession, it may be helpful to interpolate over the first gap in order to 
obtain more data points for the prediction used to fill the second gap. Interpolation methods will be 
discussed in Section 5.3. 

  



5. Gap filling 
 
Data gaps are a result of marker occlusion in optical motion capture, indicating a period of time in 
which a marker was not visible for a sufficient amount of camera’s, or was outside of the acquisition 
volume, making it impossible to determine its position. 
There are two ways of dealing with gaps in the motion capture data of a specific marker: 
interpolation and extrapolation. Since interpolation requires both data before and after the gap its 
use is limited to post-processing methods. It also requires that segments of data can be identified as 
belonging to the same marker. Unless markers are uniquely distinguishable, this is a non-trivial task. 
Therefore, the main focus of this section will be on extrapolation methods, which may be used in 
real-time processing and may also help in matching data segments. After this, spline interpolation 
will also be discussed as a post-processing method. 
 

5.1 Average velocity prediction 
 
This method predicts the position of markers that have gone missing based on the average velocity 
over the n previous frames (where the velocity of a marker at frame i is calculated as the position of 
the marker at frame i minus its position at frame i-1). Although one would expect the ending velocity 
to be the most accurate one to use for prediction, this may not be the case due to noise in the data. 
Figure 10 illustrates the results of predicting ten frames ahead using average velocity prediction for n 
= 10, n = 20 and n = 30. To establish whether there is an optimal value for n, average deviation of 
these predictions were determined for different values of n and different sizes of ‘gaps’. (The dataset 
was the same as in Section 3.3.1.) 
Prediction deviations (from the actual, smoothed data) were determined after predicting one to 
thirty frames ahead, using prediction based on 2 ≤ n ≤ 22 previous frames. Since prediction accuracy 
can be expected to decrease as one looks further ahead, for each gap size, these deviations were 
normalized by dividing them by the minimum deviation over all values of n. This means the most 
accurate prediction for a certain gap size will have a value of 1, and every other prediction will have a 
value larger than 1. The average of these results over all gap sizes was then computed for each of the 
six datasets and normalized again, the results of which are shown in Table 2. 
As the table shows, this optimal value is not consistent among the different data sets, although 
predictions using n = 12 previous frames seem to perform quite well on average. An exception to this 
is the fifth data set, which can be most accurately predicted using only two or three previous data 
frames (resulting in an approximation of the ending velocity). On closer inspection, this dataset 
turned out to be almost noiseless, in which case the most recent velocity could indeed be expected 
to be the most accurate one. 
 



 
Figure 10. Predicted values after a 10 frame gap using average velocity prediction over 10, 20 and 30 previous frames. 

 

#frames used marker1x marker1y marker1z marker2x marker2y marker2z average 

2 1.872542 1.648686 1.358519 2.190731 1.002761 1.34884 1.458502 
3 1.625096 1.518983 1.244206 1.695642 1 1.14571 1.273905 
4 1.499177 1.433857 1.166096 1.51331 1.019998 1.069129 1.192176 
5 1.415986 1.360005 1.109053 1.392531 1.04578 1.03344 1.138824 
6 1.330127 1.292002 1.065074 1.304951 1.072415 1.015133 1.095957 
7 1.25738 1.228737 1.032028 1.24636 1.101562 1.007404 1.064062 
8 1.197334 1.170599 1.01137 1.188625 1.132118 1.002125 1.037573 
9 1.144079 1.119318 1.000856 1.142664 1.164269 1 1.017325 

10 1.105811 1.085203 1 1.105273 1.197474 1.000092 1.005377 
11 1.079664 1.063387 1.008502 1.073874 1.231724 1.002302 1.000071 
12 1.061871 1.051915 1.022202 1.05008 1.266598 1.006223 1 
13 1.049029 1.043263 1.037827 1.031969 1.302055 1.012291 1.002732 
14 1.037459 1.035107 1.053137 1.017451 1.337796 1.02071 1.006653 
15 1.027571 1.025952 1.067838 1.008326 1.373793 1.030889 1.011733 
16 1.018769 1.016348 1.082895 1.002453 1.410154 1.042057 1.01768 
17 1.010304 1.007508 1.0991 1.000097 1.446729 1.053998 1.024674 
18 1.003268 1.000931 1.117251 1 1.48338 1.066206 1.032942 
19 1 1 1.137092 1.001855 1.52017 1.077913 1.043174 
20 1.001263 1.003489 1.157612 1.004467 1.557121 1.089192 1.05497 
21 1.004609 1.008701 1.178613 1.007537 1.594092 1.100235 1.067466 
22 1.008896 1.013638 1.199774 1.010513 1.630896 1.110763 1.07997 

Table 2. Average (normalized) prediction deviation based on average velocity prediction over 2-22 previous frames. 

 



To see whether smoothing could improve the accuracy of predictions or could reduce the number of 
previous frames over which average velocity needs to be calculated, the experiment was repeated, 
but this time, the 50 previous frames were smoothed before prediction. The results are shown in 
Table 3. For the third and fifth data set, using the ending velocity (based on the last two frames) 
turns out to be the most accurate prediction method indeed. For the fifth data set, this is expected to 
be due to the low level of noise, although for the third data set (depicted earlier in Figure 2), it may 
also be due to the frequent change in direction, favoring a prediction method that reacts quickly. 
The other data sets do not follow this trend and in these cases prediction performs better using a 
larger amount of previous frames after smoothing. On average, according to Table 3, using n = 13 
previous frames provides the most accurate prediction after smoothing. This is close to the optimal 
value n = 12 of prediction without smoothing. 
 
#frames used marker1x marker1y marker1z marker2x marker2y marker2z average 

2 1.217908 1.11786 1 1.285279 1 1.066909 1.053392 
3 1.199145 1.10441 1.003812 1.262529 1.001227 1.05506 1.043712 
4 1.181215 1.091786 1.009017 1.240544 1.003453 1.044582 1.035008 
5 1.164186 1.080052 1.015754 1.219368 1.006724 1.03541 1.027327 
6 1.148008 1.069223 1.023889 1.198711 1.011081 1.027426 1.020585 
7 1.132613 1.059271 1.033229 1.178571 1.016614 1.020467 1.014723 
8 1.117979 1.050109 1.043762 1.159133 1.023388 1.014491 1.009756 
9 1.104311 1.041795 1.055566 1.14095 1.031418 1.009874 1.005886 

10 1.091375 1.034268 1.068492 1.12408 1.040666 1.006481 1.003024 
11 1.079142 1.027448 1.082839 1.10837 1.05123 1.004056 1.001152 
12 1.067783 1.021345 1.098313 1.09367 1.063039 1.002267 1.000165 
13 1.057183 1.016106 1.114675 1.079876 1.076138 1.000988 1 
14 1.047338 1.011593 1.131985 1.067044 1.09046 1.00027 1.000651 
15 1.038416 1.007805 1.149932 1.055392 1.106202 1 1.002143 
16 1.030254 1.004767 1.168574 1.044668 1.123369 1.000195 1.004426 
17 1.023025 1.002421 1.187691 1.034789 1.142397 1.000751 1.007524 
18 1.01668 1.00085 1.207314 1.02575 1.162733 1.001682 1.011361 
19 1.01128 1.000072 1.227391 1.01775 1.183991 1.002892 1.015895 
20 1.006653 1 1.247803 1.010837 1.205819 1.004415 1.021024 
21 1.002912 1.000721 1.268302 1.004916 1.228067 1.006193 1.026692 
22 1 1.002207 1.288884 1 1.25057 1.008127 1.032846 

Table 3. Average (normalized) prediction deviation based on average velocity prediction over 2-22 previous frames after 
smoothing the previous data..  

 
Finally, to compare the different prediction methods, prediction deviation was determined for 
prediction using 12 unsmoothed previous frames, 13 smoothed previous frames and 2 smoothed 
previous frames. The results are displayed in Table 4, showing the first prediction (using 12 
unsmoothed previous frames) method is the most accurate one. Although the second method (using 
13 smoothed previous frames) performs better than the third (using two smoothed previous frames), 
it can be observed that the third prediction method becomes more accurate as gap size increases. 
 

gap size 5 10 15 20 25 30 average 

method 1 1 1 1 1 1 1 1 

method 2 1.147294 1.095726 1.064244 1.051551 1.044527 1.042599 1.08748 

method 3 1.231998 1.111382 1.054874 1.038751 1.036007 1.041173 1.105797 
Table 4. Comparison of prediction accuracy for various gap sizes. Method 1: 12 unsmoothed frames, method 2: 13 smoothed 
frames, method 3: 2 smoothed frames. 



5.2 Polyfit prediction 
 
This method tries to find a polynomial function that fits a dataset as good as possible, using the 
Matlab method “polyfit”. [7] This function may then be used to predict values at different points in 
time, possibly making it useful as a gap filling or prediction method. 
Figure 11 shows the result of applying a polyfit to all previous data points and then using this 
polynomial function to predict the value for the current frame. Note that this is not a continuous 
function, a new function was created for each frame. As the figure shows, the polyfit function does 
not appear capable of fitting accurately to the entire set of data as the number of frames increases. 
For this reason, the accuracy of predictions based on a smaller amount of previous frames was 
researched next. 
Figure 12 shows the result of filling a number of artificially created gaps using polyfit prediction 
based on twenty previous frames. Figure 13 displays the same predictions using smoothed data as 
input. As can be seen in the figures, some predictions seem to be reasonably accurate, but at other 
points the difference between predicted position and real position seems to increase rapidly, making 
it an unreliable method. Such results were also found for predictions based on smaller and larger 
amounts of frames. It can also be noted that the prediction does not always start at the last 
(smoothed) data point, providing a relatively large deviation even for a small number of missing data 
frames. Based on these observations, the polyfit method was discarded as a potential method for 
gap filling. 
 

 
Figure 11. Polyfit approximation of data based on an increasing amount of previous frames. 



Figure 12. Gap filling using polyfit prediction on 40, 50 and 60 frames of raw data.

Figure 13. Gap filling using polyfit prediction on 40, 50 and 60 frames of smoothed data. 



5.3 Spline interpolation 
 
During post-processing, gaps may also be filled using interpolation methods rather than 
extrapolation methods, allowing for the use of data captured after the gap. 
There are numerous interpolation methods, a number of which have been included in Matlab. [8] 
Experimentation was done with Hermite spline interpolation, using the “pchip” function. [9] This 
method fills a gap using position and velocity at both ends of the gap to create a C2 continuous 
spline. 
Figure 14 shows an example of a gap filled using the pchip function. Although it does not appear to 
be C2 continuous, this is due to the large sampling size which was used for sampling interpolated 
points on the spline. (Samples taken along the spline were one frame apart, since there is no for 
sampling inbetween frames for data processing purposes. Using a higher sample rate would show C2 
continuity.) 
 

 
Figure 14. Gap filling using Hermite spline interpolation. 

Table 5 shows the results of comparing the accuracy of average velocity prediction (using thirteen 
smoothed previous frames) and Hermite spline interpolation by comparing their average deviation 
from the actual, smoothed data over gaps of different sizes. Data before the gaps was smoothed for 
both methods. Data after the gap was not smoothed. The results suggest average velocity prediction 
is more accurate than spline interpolation. Still, spline interpolation can be expected to be more 
accurate toward the end of the gap, since it will converge to the point at which data reappears. 
Further experimentation could be done to confirm this and other interpolation methods may provide 
different results as well. 
 
 
 



gap size 5 10 15 20 25 30 average 

interpolation 
1.159234 1.203646 1.355903 1.556118 1.84818 2.227502 1.55843 

extrapolation 
1.104334 1.100329 1.096698 1.093716 1.090358 1.086264 1.095283 

Table 5. Comparison of interpolation and extrapolation accuracy (normalized), calculated for gaps of different amounts of 
frames. 

6. Marker identification 
 
During optical motion capture using passive markers, markers are not uniquely distinguishable. This 
means markers have to be identified based on their expected position and behavior over subsequent 
frames. When markers are occluded for a relatively long period of time, motion capture software 
may not be able to identify markers correctly, resulting in data segments of the same marker that are 
stored as if they belong to multiple separate markers. In this section, a method will be presented that 
deals with the following marker identification problems: 

- Identifying whether a new data segment belongs to a marker that has disappeared earlier. 
- Identifying ghost markers, reflections in the environment that are incorrectly identified as 

markers. 
 

6.1 Method overview 
 
An implementation of the marker identification method was made in Matlab, which used the 
following input format: data was provided in a table/matrix format, where rows were used to store 
data for subsequent frames and columns were used for separate markers, storing x, y and z-
coordinates in three subsequent columns. Due to the problems with occlusion described earlier, data 
belonging to one marker may be stored in a number of columns. 
The method works on a frame-by-frame basis. For each frame, processing was divided between 
dealing with existing columns (columns for which data was available in previous frames) and new 
columns (columns in which data appeared for the first time during this frame). For all existing 
columns, a status was maintained, which was one of the following: 
 

- Available: data was available in previous frames 
- Missing: the marker has gone missing in one of the previous frames 
- Interpolating:  the marker has reappeared and interpolation is going on between the 

predicted position used to fill the gap and the new data 
- Continued elsewhere: the marker has reappeared in another column and processing should 

continue at that point 
 
For each existing marker (group of three columns), this status information can be combined with the 
available data in the current frame to determine an appropriate action. 
If data was available before and is available for this frame as well, the data for the current frame can 
be read and stored normally. If no data is available for the current frame, the status can be changed 
to missing and extrapolation can be started to predict marker position. 
If the marker was missing and continues to be missing (markers may also reappear in the same 
column), extrapolation can be continued. If the marker reappears, interpolation can be started to 
close the gap between prediction and actual data. 
If interpolation is going on and data is available for the current frame, it can continue, possibly 
changing the status to available when interpolation is finished. If no data is available, the status 
should be changed to missing again and the position for the current frame should be extrapolated. As 



will be discussed later, prediction based on a small set of previous frames may be inaccurate and 
ways may be found to obtain a larger dataset for use in prediction methods. 
 
Now, for each new data column in a frame, a check should be made to see whether the data might 
match one of the existing markers that has gone missing. This can be done by comparing the 
predicted position of the existing marker with the position in the new set of columns, allowing for a 
certain error margin. By doing this for all missing markers, a best match can be obtained. If no match 
is found, the data in the new columns is assumed to belong to a marker that was not visible before. If 
a match is found, the status of the old column can be set to continued elsewhere, while interpolation 
can be started for the new column. 
 

6.1.1 Prediction method 

In the implementation in Matlab, extrapolation was done using the average velocity prediction 
discussed in Section 5.1, or rather, the most recent velocity after smoothing the available data for 
the previous points using the Kalman smoother filter. Smoothing of the previous data points was 
done as soon as a marker went missing, using all data points up to the previous gap. If this set of data 
was too small, prediction might become unreliable, as was discussed in Section 4.3.1. For this reason, 
the pchip method, discussed in Section 5.3, was used to fill the previous gap in these cases, providing 
more data points for smoothing. 
 

6.1.2 Best match measurement and error threshold 

When the predicted position of a missing marker is compared with the data in a new column, one 
should allow for a certain error threshold for two reasons: prediction may be inaccurate and the 
newly obtained data may be subject to noise. 
To determine an appropriate error threshold, noise was measured by calculating the difference 
between a raw dataset and a dataset that was smoothed using the Kalman smoother filter. Table 6 
displays the results of measuring noise for six different coordinates from two different markers over 
600 frames. 
The other part of the error threshold should be based on prediction accuracy. Since prediction 
accuracy can be expected to decrease as gap size increases (which is confirmed by the results 
presented in Section 5), it may be useful to create a variable error threshold for this, which is 
dependent on gap size. One should, however, pay attention that the error threshold does not 
become so large that any other signal is accepted as a reappearance over time. 
 

 
marker 1x marker 1y marker 1z marker 2x marker 2y marker 2z 

mean 0.885759 1.957587 0.976544 0.746959 1.230555 1.173431 

standard deviation 1.050888 2.61296 0.947095 0.699195 1.218669 1.198924 

maximum 5.442585 12.00994 5.566206 4.975042 8.877608 7.027465 
Table 6. Noise measurements for different signals, obtained by taking the absolute difference between raw data and data 
smoothed using the Kalman smoother filter (in mm). 

6.1.3 Real-time processing: Interpolation after marker reappearance 

Once a marker reappears, the predicted position of that marker may differ from the new 
measurements. For this reason, a simple interpolation method was created that can be used in a 
real-time processing pipeline, smoothing the correction that needs to take place, illustrated in Figure 
15 . Assuming interpolation takes place over n frames, the first interpolated coordinates can be 
obtained by following the vector from the predicted position in the previous data frame toward the 
new data position for 1/n of its length. After this, the i-th interpolated value can be obtained by 
following the vector from the previous interpolated position toward the new data position for i/n of 
its length, where 2 ≤ i ≤ n. 



 

 
Figure 15. Interpolation over four frames after marker reappearance. As the marker reappears in frame 3, the interpolated 
position is determined by following the vector from the predicted position in frame 2 to the data position in frame 3 for ¼ of 
its length. In the next frame, the vector from the previous interpolated position and current real data position is followed for 
½ of its length. This process is repeated until interpolation reaches the actual data position in frame 6. 

 
An example of the result of this method is shown in Figure 16, showing the result of interpolating 
over 10 frames after marker reappearance. This appears to be a reasonable amount of time, finding a 
balance between an smooth transition and getting back to the actual position as quickly as possible. 
Note that this form of interpolation is only necessary in a real-time application. In a post-processing 
method, gaps could presumably be filled more accurate using interpolation methods such as the 
Hermite spline. Note that in this case, extrapolation is still necessary to perform marker identification 
at the point of reappearance. 



 
Figure 16. Interpolation after marker reappearance over a period of ten frames. 

 

6.2 Remaining issues and possible extensions 

6.2.1 Detecting and resolving incorrect marker identification in previous frames 

Marker identification is not a flawless process and it could happen that a data column is labeled 
incorrectly at some point. Such errors may become evident at a later point in time and could be 
corrected. For instance, a new data column may appear containing positional data that is close 
enough to the predicted position of a missing marker to be considered its reappearance. A few 
frames later, however, another new data column appears, containing a significantly better match 
than the one before. It is likely that this new data column belongs to the missing marker and the 
other column belongs to another one, or to a new marker. The new data column can now be labeled 
as the reappearance of the missing marker, while the other data column can be reevaluated. 
To be able to detect such mistakes, prediction could be continued for a number of frames after a 
marker is labeled as having reappeared in another column. If a significantly better match is found 
during this time, labeling adjustments can be made. 
 
Motion capture systems may also perform incorrect marker identification. If two markers come very 
close to each other, the signals may be mixed up and the markers are switched. Such switches could 
be detected by identifying markers that come close to each other and comparing predicted position 
with the position found in the data during the subsequent frames. If the prediction is found to match 
the data of the other marker more accurately than its own data, this could indicate the markers have 
been mixed up by the system. 
 



6.2.2 Dealing with ghost markers 

Ghost markers are recordings of an optical motion capture system that do not belong to any marker, 
such as reflections on certain surfaces. Ghost markers should be ignored, but need to be identified as 
such before this can be done. One way to do this is to use knowledge about the total number of 
markers that is used. If there are ten markers of which none are missing and an eleventh signal 
appears, it can be assumed that one of the signals belongs to a ghost marker. 
Also, if the total number of markers is assumed to be known, and all markers have been visible in 
earlier frames, a signal may be identified as a ghost marker if its position does not correspond to the 
predicted position of any of the missing markers. 
 Ghost markers may also be identified by considering their position with respect to those of other 
markers. If positional data is far away from any other marker positions, it is likely that this is some 
reflection in the environment, rather than the observation of an actual marker. 
 

7. Neighboring marker constraints 
 
In the gap filling and marker identification methods discussed so far, it was assumed that there was 
no knowledge on the placement of markers and the underlying skeleton of the subject. Such 
knowledge, however, may be used to determine constraints on the position and movement of 
markers. Such constraints may aid in the processes of extrapolation and marker identification. 
This section will describe the results of applying skeleton based constraints by taking into account the 
fixed distances that exist between marker pairs placed on the same body part during these 
processes. For these experiments, a different dataset was used than the one used in the previous 
sections. It consisted for 1280 frames of motion capture data for six markers, placed on the shoulder, 
upper arm, elbow, inner wrist, top wrist and outer wrist of the right arm. The markers and their fixed 
distance relations are indicated in Figure 17. The motion consisted of picking up an object from the 
floor. 
 

 
Figure 17. Markers and their fixed distance relations. S = shoulder, UA = upper arm, E = elbow, IW = inner wrist, TW = top 
wrist, OW = outer wrist 



To determine the fixed marker distances, average distance between all pairs of markers with a 
relatively fixed distance relation was determined over all frames in the dataset (although usually, this 
could also be determined during a ‘static pose’ trial). Since markers may shift with respect to the 
underlying skeleton and since captured data may be subject to noise, the measured marker distances 
can be expected to differ slightly over time. For this reason, the standard deviation in marker 
distance was also determined for each pair with a fixed distance relationship (called neighbors from 
now on). The average distance and standard deviation for all pairs of markers is shown in Table 7. 
 

 
S-UA UA-E E-IW E-TW E-OW IW-TW IW-OW TW-OW 

average distance 14.39545 22.22558 24.29905 23.25881 22.59154 5.830325 8.675259 5.91047 

standard deviation 1.35672 0.657855 0.151324 0.253707 0.52324 0.064943 0.158074 0.0837 
Table 7.Average marker distance and standard deviation in distance( in cm) for all pairs of markers with a fixed distance 
relationship. S = shoulder, UA = upper arm, E = elbow, IW = inner wrist, TW = top wrist, OW = outer wrist. 

 

7.1 Gap filling using distance constraints 
 
The fixed distances between pairs of markers may be used to improve prediction methods if one of 
them goes missing. A method was developed in which prediction was done as usual as a first step, 
after which its predicted position was evaluated and possibly corrected based on distance constraints 
in a second step. 
For the initial prediction average velocity prediction was used based on the last two frames, after 
smoothing the previous data at the start of a gap. When a predicted position for the missing marker 
was obtained, its position was compared to that of all of its neighbors. For each neighbor, the 
distance between predicted position of the missing marker and the current position of the 
neighboring marker was not allowed to exceed the sum of the expected distance (stored in a 
distance matrix) and the allowed error margin (stored in a distance error matrix). The error margin 
for each pair of related markers was set to twice the standard deviation reported in Table 7. 
If the distance at the current frame exceeded the sum of the expected distance and error margin, its 
position was corrected as follows: a vector pointing from the position of the neighbor to the 
predicted position was obtained, which was then normalized and multiplied by the expected distance 
stored in the distance matrix. This process is illustrated in Figure 18. Distance correction was applied 
for one neighbor at a time, which means one correction might cause the constraints of a previously 
evaluated neighbor to be violated. For this reason, all neighbors were evaluated iteratively until no 
more corrections occurred. 



 
Figure 18. A sequence of positions of the upper arm marker during distance correction. 1. Initial predicted position, outside 
the error margin of the shoulder marker. 2. New position after distance correction for the shoulder marker, outside the error 
margin of the elbow marker. 3. New position after distance correction for the elbow marker, outside the error margin of the 
shoulder marker. 4. New position after distance correction for the shoulder marker, inside the error margin of all neighbors. 

 
The method was tested on the available dataset, to which a number of artificial gaps had been 
introduced. The results are displayed in Figure 19 and 20, corresponding to marker placed on the 
upper arm and the top wrist respectively. As the figures show, the application of distance correction 
seems to improve accuracy, especially for the top wrist marker, for which prediction follows the 
actual data very closely. This may be attributed to the fact that the top wrist marker has four 
neighbors, for which there is only a small deviation in distance. Figure 19 illustrates prediction the 
corrected prediction can become quite noisy after the first correction is applied. This is due to the 
fact that once a correction is made, the velocity used during the prediction in the next frame is based 
on the difference between the (uncorrected) position in the previous frame and the corrected 
position in the current frame, which is in no way related to the expected direction in which the 
marker is moving. This increases the likelihood of more corrections in the future, resulting in the high 
frequency noise that can be observed in Figure 19. Fortunately, such high frequency noise can easily 
be reduced in a post-processing step, as was discussed in section 4. 



 
Figure 19. Comparison of extrapolation using average velocity prediction and prediction combined with distance correction 
for the x-coordinate of the upper arm.

 

Figure 20. Comparison of extrapolation using average velocity prediction and prediction combined with distance correction 
for the x-coordinate of the top wrist. 



Table 8 compares the average deviation (from the actual data) of prediction without distance 
correction and prediction with distance correction for all markers, for various gap sizes. The results 
have been normalized by dividing the average deviations by the minimum of the two prediction 
methods for each specific marker and gap size. As one can see, there are some differences between 
the results for different markers. Predictions for the marker placed on the elbow and the markers 
placed on the wrist are drastically improved by adding distance correction. Prediction for the marker 
on the upper arm becomes more accurate after distance correction only after a certain amount of 
frames, while prediction for the shoulder marker is more accurate without correction. However, for 
this marker, there is a rapid decrease between differences in prediction accuracy as gap size 
increases, suggesting prediction with correction may outperform prediction without correction at 
some point as gap size increases above 30 frames. Also, it should be noted that accuracy of 
prediction with correction may well be improved by smoothing the corrected data, since it shows a 
lot of high frequency noise. 
The differences between the results for different markers can be explained by looking at the amount 
of distance relations and the error margins that are used for correction. The shoulder marker only 
has one neighbor (the upper arm) and the variation in distance between these markers (and the 
error margin based on this deviation) is relatively large compared to that of other distance relations, 
as can be seen in Table 8. The wrist markers, on the other hand, each have three neighbors (the 
other two wrist markers and the marker on the elbow) and the deviations between these markers 
are relatively small, resulting in tight error margins. This allows for a more accurate prediction based 
on distance relations. It is possible that prediction accuracy of markers such as the shoulder marker 
could be improved by using a smaller error margin during correction. (During marker identification, 
however, use of the larger error margin is advisable, since such large deviations may in fact occur.) 
In general, experimental results suggest distance correction provides useful improvements to 
extrapolation accuracy, depending on the amount of distance relations, error margins and gap size. 
 
 

gap size 5 10 15 20 25 30 

       shoulder (uncorrected) 1 1 1 1 1 1 

shoulder (corrected) 1.654089 1.490199 1.358643 1.201002 1.086559 1.009728 

       upper arm (uncorrected) 1 1 1 1.231517 1.240659 1.687076 

upper arm (corrected) 1.835317 1.170413 1.039515 1 1 1 

       elbow (uncorrected) 1.622572 2.657257 3.812826 4.839934 6.820776 10.02819 

elbow (corrected) 1 1 1 1 1 1 

       inner wrist (uncorrected) 3.431981 8.133409 16.70691 25.19662 36.86682 54.33745 

inner wrist (corrected) 1 1 1 1 1 1 

       top wrist (uncorrected) 4.661658 9.900018 17.78536 29.45367 43.9443 61.93673 

top wrist (corrected) 1 1 1 1 1 1 

       outer wrist (uncorrected) 2.585695 5.127177 9.731586 18.10275 25.99722 32.61628 

outer wrist (corrected) 1 1 1 1 1 1 
Table 8. Comparision of gap filling for gaps of different amounts of frames using average velocity prediction (over the last 
two smoothed frames) and gap filling using the same prediction followed by distance correction. 



7.2 Marker identification using distance constraints 
 
Fixed distances between marker pairs may also be used during the process of marker identification. 
When a new marker appears, its distance to other markers can be compared to the fixed distances 
between a missing markers and its neighbors. If the difference between the position of a new marker 
and a neighboring marker of the missing marker is too large (allowing for a certain error threshold of 
course), it is easy to conclude that the new marker cannot be the missing marker. 
Alternatively, distance relations could also be used to determine which constraints are met most 
accurately by the new marker, in cases where there are multiple possible candidates. 
 
Distance constraints may also be used to identify marker switching, as discussed in Section 6.2.1. If 
the observed position of a marker violates its distance constraints, a check may be performed see if 
its position meets the constraints of another marker, and vice versa. 

8. Discussion 
 
In this report, a setup was provided for motion capture data processing pipelines, evaluating both 
real-time and post-processing methods. Different methods for data smoothing, gap filling and marker 
identification have been discussed. Recommendations about the use of particular methods for both a 
real-time and a post-processing pipeline will be discussed next. 
 

Real-time pipeline 

Although smoothing previous data points was expected to increase prediction accuracy due to a 
more accurate estimation of the last known position and velocity, experimental results contradicted 
this hypotheses, indicating a decrease in accuracy after smoothing. Comparison using a larger dataset 
belonging to a larger set of markers may determine whether smoothing previous data segments 
before extrapolation is in fact useful. The use of a Kalman smoother filter (third order, with 
experimental noise of 10e7) is recommended for this purpose over the use of the Butterworth 
lowpass filter, since the last becomes inaccurate at the end of a data segment, as was discussed in 
section four. 
 
For gap filling, extrapolation can be applied using the average velocity prediction method discussed 
in Section 5.1. Experimental results indicated average velocity prediction based on 12 previous non-
smoothed frames was most accurate in general, but these results are based on a small data set 
consisting of a limited amount of markers. 
Experiments with correction of predictions based on neighboring marker constraints indicated that 
such corrections may in fact increase prediction accuracy in general. It should be noted that the 
benefits of such correction depend the amount of distance relations, error margins used during 
correction and the gap size over which prediction takes place. 
Furthermore, more sophisticated extrapolation methods have been developed in earlier research, 
such as [2], [3], [4] and [5], discussed in Section 2. These may also prove to be more accurate than 
the methods examined in this report. 
 
For marker identification, the approach discussed in Sections 3 and 6 seems appropriate, but 
improvements could be made in a number of ways: extensions could be made to reverse the effects 
of incorrect marker identifications at an earlier point in time, experiments with different error 
thresholds could be performed, information about the total amount of markers could be 
incorporated and the use of distance relations between markers could be added as an identification 
criteria. 



 

Post-processing pipeline 

In a post-processing pipeline, smoothing can be applied as a final step, after gap filling and marker 
identification. (As was discussed above, the usefulness of smoothing as a way to improve prediction 
accuracy remains unclear.) The use of a third order Kalman smoother filter with experimental noise 
of 10e7 produced good results for the data used during experimentation, but a different value of 
experimental noise may be more appropriate depending on the amount of noise in the data. 
 
In a post-processing pipeline, gap filling will still need to be done using extrapolation for the purpose 
of marker identification. However, once a marker has reappeared, spline interpolation may also be 
used to fill the gap in the data. Although, as discussed in Section 5.3, use of the pchip function in 
Matlab did not result in improved accuracy. Beside Hermite spline interpolation, future research with 
other interpolation methods could also be performed. 
 
For marker identification, the same approach as the one used in the real-time pipeline is 
recommended, and similar improvements could be made. Future research might look into the 
possibilities of using post-processing specific information to assist in marker identification. 
 
In general, gap filling is considered to be the weakest (and most important) link in the pipelines and it 
is recommended that this area be the focus of initial future improvements. 
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